Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria.
نویسندگان
چکیده
Oxidation of nitrite to nitrate in aquaria is typically attributed to bacteria belonging to the genus Nitrobacter which are members of the alpha subdivision of the class Proteobacteria. In order to identify bacteria responsible for nitrite oxidation in aquaria, clone libraries of rRNA genes were developed from biofilms of several freshwater aquaria. Analysis of the rDNA libraries, along with results from denaturing gradient gel electrophoresis (DGGE) on frequently sampled biofilms, indicated the presence of putative nitrite-oxidizing bacteria closely related to other members of the genus Nitrospira. Nucleic acid hybridization experiments with rRNA from biofilms of freshwater aquaria demonstrated that Nitrospira-like rRNA comprised nearly 5% of the rRNA extracted from the biofilms during the establishment of nitrification. Nitrite-oxidizing bacteria belonging to the alpha subdivision of the class Proteobacteria (e.g., Nitrobacter spp.) were not detected in these samples. Aquaria which received a commercial preparation containing Nitrobacter species did not show evidence of Nitrobacter growth and development but did develop substantial populations of Nitrospira-like species. Time series analysis of rDNA phylotypes on aquaria biofilms by DGGE, combined with nitrite and nitrate analysis, showed a correspondence between the appearance of Nitrospira-like bacterial ribosomal DNA and the initiation of nitrite oxidation. In total, the data suggest that Nitrobacter winogradskyi and close relatives were not the dominant nitrite-oxidizing bacteria in freshwater aquaria. Instead, nitrite oxidation in freshwater aquaria appeared to be mediated by bacteria closely related to Nitrospira moscoviensis and Nitrospira marina.
منابع مشابه
Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria.
Three nucleic acid probes, two for autotrophic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria and one for alpha subdivision nitrite-oxidizing bacteria, were developed and used to study nitrifying bacterial phylotypes associated with various freshwater and seawater aquarium biofilters. Nitrosomonas europaea and related species were detected in all nitrifying seawa...
متن کاملGenome-Enabled Insights into the Ecophysiology of the Comammox Bacterium “Candidatus Nitrospira nitrosa”
The recently discovered comammox bacteria have the potential to completely oxidize ammonia to nitrate. These microorganisms are part of the Nitrospira genus and are present in a variety of environments, including biological nutrient removal (BNR) systems. However, the physiological traits within and between comammox and nitrite-oxidizing bacterium (NOB)-like Nitrospira species have not been ana...
متن کاملMetagenomic Evidence for the Presence of Comammox Nitrospira-Like Bacteria in a Drinking Water System
We report metagenomic evidence for the presence of a Nitrospira-like organism with the metabolic potential to perform the complete oxidation of ammonia to nitrate (i.e., it is a complete ammonia oxidizer [comammox]) in a drinking water system. This metagenome bin was discovered through shotgun DNA sequencing of samples from biologically active filters at the drinking water treatment plant in An...
متن کاملExpanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira.
Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Une...
متن کاملCultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia.
Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 1 شماره
صفحات -
تاریخ انتشار 1998